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The concept of periodic average structure is mutuated from the theory of

incommensurately modulated structures. For quasicrystals, this concept (up to

now explored only in few cases) is becoming increasingly useful to understand

their properties and to interpret some important structural features. The

peculiar property of quasicrystals is that they admit not one but many (in®nite)

possible different average structures. Few of them, however, will be meaningful.

Here are given a simple method (based on reciprocal space) for generating all

the possible periodic average structures of decagonal quasicrystals and some

new ideas about their meaning. By this method, the most signi®cant average

structures can be recognized from the diffraction pattern.

1. Introduction

The concept of periodic average structure (PAS hereafter)

stems from the theory of incommensurately modulated

structures and composite structures [in short IMS, CS,

respectively (see Steurer & Haibach, 2001, for details)]. In

IMS, a main periodic lattice is perturbed by weak modula-

tions incommensurate to it; this is clearly visible in reciprocal

space, showing a lattice of strong main re¯ections accom-

panied by a multitude of incommensurate weaker satellite

peaks. In CS, two or more incommensurate periodic phases

coexist and the same number of incommensurate main reci-

procal lattices form the diffraction pattern. The description of

quasicrystals (QCs in this work) as IMSs has been proven to

be possible (Steurer & Haibach, 1999b; Steurer, 1999, 2000)

and structurally signi®cant (Steurer & Cervellino, 2001;

Cervellino et al., 2002). In QCs, however, there is no clearcut

distinction between main and satellite re¯ections, and there

are several possible main re¯ections lattices, as in CS.

However, there is intermodulation between different possible

PASs, as in IMS. In fact, as we will show, any periodic

sublattice of the QC's reciprocal lattice may be chosen as the

main re¯ections lattice. Two possible choices for a decagonal

QC (basic Ni-rich d-Al±Co±Ni) are given in Steurer &

Cervellino (2001).

Let us ®rst clarify the meaning of PAS. The comparison of

QCs with analogous periodic phases has previously been

developed in the framework of the approximant phases (see

Quiquandon et al., 1999; Steurer & Haibach, 1999a, 2001, and

references therein); their relation to QCs is quite different

from the QC±PAS relation. In fact, to compare QCs with

approximants one has to introduce unbounded atomic

displacements, with consequent dif®culties of interpretation

(Steurer, 2000). In the PAS approach, conversely, the atomic

displacement ®eld is bounded.

Different methods to obtain PAS of QCs have been

considered. In the approach of Duneau & Oguey (1990),

Duneau (1991) and Xu & Mai (1998), no real average struc-

ture is involved. There a QC is partitioned as a CS with

intermodulation of the different components, combining

concepts from IMS and CS theory. However, there the

different intermodulating periodic structures are obtained by

a tricky geometric partition of the acceptance window. The

method is very complex to generalize. Furthermore, it yields

little information on the global relationship between QC and

existing similar periodic phases.

The approach of Wolny (1998, see also references therein) is

more meaningful. The formalism developed there, based on

reciprocal-space analysis, is very useful because it de®nes

properly the concept of PAS for any scattering system (peri-

odic, quasiperiodic and disordered; static and dynamic). Its

shortcoming (the opposite face of the generality) is a general

complexity as it is not based on a higher-dimensional

description. For many aperiodic systems, the higher-dimen-

sional description is a very convenient and useful tool.

However, its results are perfectly compatible with ours

(Steurer & Haibach, 1999b; Steurer, 1999, 2000; Steurer &

Cervellino, 2001; Cervellino et al., 2002). The formalism used

in the latter works is explicitly higher-dimensional, with all the

advantages of interpretation that follow. However, it is based

on a complex geometrical procedure in direct space.

This contribution is meant to illustrate a new simple method

to construct any arbitrary possible PAS of a d-QC. The
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method is based on an arbitrary choice of a base set of

re¯ections in the QC diffraction pattern. The PAS will be

generated by the QC structure factors corresponding to the

periodic subset of re¯ections generated by them. This allows

one to choose re¯ections so that this periodic sublattice

approximates that of a known periodic phase, whose structure

we wish to compare with the QC. The method (as in Wolny,

1998) is actually independent of the higher-dimensional

embedding. We develop it in that frame, however, because this

allows one to get some new insight into the meaning of PAS of

QCs.

2. Embedding of decagonal quasicrystals

A d-QC can be geometrically represented as a periodic

stacking of parallel atomic planes along an axis orthogonal to

them. Each plane shows pentagonal or decagonal symmetry

with respect to the periodic axis. For our purposes, the peri-

odic direction is unimportant and we will consider only one

atomic plane as a 2D d-QC. Physically, a QC is represented by

a probability density (for atoms and/or electrons) P�rjj� on Ejj,
a 2D vector space representing one atomic plane (physical

space). We will henceforth assume that P�rjj� is also the scat-

tering density. Denote by E? a complementary orthogonal 2D

space (perpendicular space). Their direct sum E � Ejj � E? is

the embedding space. We will denote �jj, �? the projectors

from E onto Ejj, E?, respectively. Take also orthonormal bases

v1; v2 of Ejj and v3; v4 of E?; then E � spanfv1; v2; v3; v4g
(V-basis). The quasiperiodic structure P�rjj� on Ejj can be

thought of as a section of a periodic structure in E, repre-

sented by a periodic probability density P̂�r�r�rjj� r?. The

sectioning acts as

P�rjj� � P̂��jjr� t0�; �1�
where t0 is a ®xed vector of E?. The 4D lattice is

�QC � R �P4

i�1

nidi

����ni 2 Z; i � 1; . . . ; 4

� �
: �2�

It is de®ned by its fundamental vectors di, i � 1; . . . ; 4

(D-basis); these are appropriately chosen so that �QC is

invariant with respect to ®vefold rotations and Ejj, E? are its

irreducible invariant subspaces. The standard 4D embedding

(see Steurer & Haibach, 1999a, 2001) is the simplest way to

ensure these properties. The embedding matrix DV, which

transforms vector components from the D-basis to the V-basis,

can be written as

DV � aQC

5

ÿ�2 ÿ�2�2 ÿ�2�2 ÿ�2

�� � ÿ� ÿ��
ÿ�2�2 ÿ�2 ÿ�2 ÿ�2�2

ÿ� �� ÿ�� �

��������
��������: �3�

The form given here uses the Pisot number � � �1� 51=2�=2 �
2 cos��=5�, the positive root of x2 ÿ xÿ 1 � 0, and the alge-

braic number � � �3ÿ ��1=2 � 2 sin��=5�. Their properties

(see Appendix A) allow for great compactness in calculations.

aQC is the direct-space QC metric constant (Steurer &

Haibach, 1999a, 2001); typically for known decagonal phases

aQC � 0:38 nm. We will put aQC � 1 in the following. The

reciprocal lattice is

��QC � H �P4

i�1

hid
�
i

����hi 2 Z; i � 1; . . . ; 4

� �
; �4�

where d�i � dj � �ij holds. Therefore, the reciprocal-space

embedding matrix can be written as

DV� � gDV
� �ÿ1

� a�QC

2

1=� ÿ� ÿ� 1=�
�� � ÿ� ÿ��
ÿ� 1=� 1=� ÿ�
ÿ� �� ÿ�� �

��������
��������; �5�

where a�QC � 1=aQC (1 in this work).

The concept of local isomorphism (LI) is the extension to

the embedding space E of the translational invariance of

physical laws (Levine & Steinhardt, 1986; Socolar & Stein-

hardt, 1986). The physical QC is a section of E parallel to Ejj,
cf. (1). t0 is an arbitrary origin shift. The case t0 2 Ejj is trivial.

When t0 2 E?, we will have a different QC (meaning not

geometrically congruent) for every different vector t0.

However, these will be physically indistinguishable (Steurer &

Haibach, 2001), meaning that their Fourier transform will

coincide apart from a phase factor and their N-body correla-

tions will be the same. We say that the different QCs are

locally isomorphic, or belong to the same LI class. Given the

periodicity in E, any arbitrary origin shift can be con®ned to

one 4D unit cell, e.g. the Voronoi unit cell; neglecting the Ejj

component, we can limit to the E?-projected Voronoi unit cell.

3. Construction of an arbitrary average structure

3.1. Reciprocal space

Choose now two re¯ections h1 � �h11; h12; h13; h14�D 2 Z4

and h2 � �h21; h22; h23; h24�D 2 Z4 from ��QC, such that:

[A] h1 and h2 are linearly independent;

[B] �jjh1 and �jjh2 are linearly independent;

[C] MCDfh1igi�1;...;4 � MCDfh2igi�1;...;4 � 1.

MCD denotes the largest common divisor of a set of integers.

For compactness, we will operate the change of variable1

M � h11 � h14

N � h12 � h13

P � h11 ÿ h14

Q � h12 ÿ h13

8>>><>>>: ;

R � h21 � h24

S � h22 � h23

T � h21 ÿ h24

U � h22 ÿ h23

8>>><>>>: : �6�

By this, we can calculate the V-basis components as
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h1 �
1

2

��M ÿ N� ÿM

���P�Q�
��N ÿM� ÿ N

���Qÿ P�

0BBB@
1CCCA

V

; �7�

h2 �
1

2

��Rÿ S� ÿ R

���T � U�
��Sÿ R� ÿ S

���U ÿ T�

0BBB@
1CCCA

V

: �8�

Now we introduce a shear deformation in E. This means that

the V-basis vectors and the structure of E are left invariant,

but the point r of direct space (q of reciprocal space) shifts to

rS � Ajjr (qS � A�jjq, respectively; Ajj, A�jj denote the shear

operators in the two spaces). Therefore, the QC-de®ning

probability density after shearing will be P̂S�r� � P̂�Aÿ1
jj r�.

Shear deformations have been proposed (Elser & Henley,

1985; JaricÂ & Mohanty, 1987; Goldman & Kelton, 1993; JaricÂ &

Qiu, 1993; Gratias et al., 1995; see also Steurer & Haibach,

1999a, 2001, and references therein) to obtain periodic

approximants from quasicrystals. In this case, the physical QC

is thought to be subjected to a linear phason strain and

deformed into a periodic approximant. However, that is not

our present purpose. In fact, we seek a kind of shear trans-

formation (Steurer & Haibach, 1999b; Steurer, 1999, 2000)

that leaves invariant all physical properties of the QC. In

reciprocal space, this means that the shear must not affect the

projection onto Ejj; therefore, the shear will be parallel to E?.

The converse must happen in direct space: there the Ejj section

must remain invariant [i.e. P̂S�rS� � P̂�rS� for rS 2 Ejj], there-

fore we use a linear shear parallel to Ejj. We will work in the

V-basis. From a vector q, we obtain the sheared vector

qS � A�jjq with the matrix

A�jj �
1 0 0 0

0 1 0 0

A11 A12 1 0

A21 A22 0 1

��������
��������: �9�

Note that jdetA�jjj � 1 and �A�jj�ÿ1 � 2IÿA�jj, where I is the

4 � 4 identity matrix. The Ejj components of hS
1, hS

2 will not

change, conserving their values from (7) and (8). We solve for

the coef®cients A�� by imposing that hS
1 , hS

2 have zero E?

components:

hS
1 � ��hS

1 �1; �hS
1 �2; 0; 0�V;

hS
2 � ��hS

2 �1; �hS
2 �2; 0; 0�V :

�10�

This condition determines completely the coef®cients A��.

Their expressions are

A11 � �1=����ÿ2PR� PSÿQR� 2TM �MU ÿ TN��
ÿ PRÿQR�QS� TM �MU ÿ NU�;

A12 � ��� � 1��SM ÿ RN�=�;
A21 � ��3� � 1��PU ÿQT�=�;
A22 � �1=����2NU ÿMU �QRÿ 2QSÿ TN � PS��

� NU ÿ PRÿQSÿ TN � TM � PS�;
�11�

where

� � �2PSÿ PR�QSÿ 2TN ÿ NU � TM��
� PS�QSÿQRÿ TN ÿ NU �MU: �12�

The denominator � results to zero iff the system2 of equations

0 � �MU ÿQR� ÿ �NU ÿQS� ÿ �NT ÿ PS�
0 � �MU ÿQR� ÿ �MT ÿ PR� � �NT ÿ PS�

(
�13�

is satis®ed. It is easy to see from (7) and (8) that this condition

is equivalent to having �jjh1 parallel to �jjh2 (contra

hypothesis [B]). Further simpli®cations of the A�� can be

obtained using (22).

The Ejj periodic lattice

��av � fmhS
1 � nhS

2 jm; n 2 Zg �14�
plays the role of main re¯ections lattice. We have that

��av � Ejj because of (10). Denote now by ��QCS
�

A�jj��QC � fA�jjh
��h 2 ��QCg the sheared lattice. We show now

that ��QCS
\ Ejj � ��av. In fact, Ejj � span�hS

1; hS
2�; so all and

only the points of Ejj will be a linear combination of hS
1, hS

2 . By

hypothesis [C], linear combinations of hS
1, hS

2 belong to ��QCS
iff

they have integer coef®cients, and these are all in ��av: q.e.d.

As an example, consider the PAS of Cervellino et al. (2002).

There, h1 � �1; 0; 0;ÿ1�D (hence M � N � Q � 0, P � 2)

and h2 � �0;ÿ1;ÿ1;ÿ1�D (R � ÿ1, S � ÿ2, T � 1, U � 0).

In the V-basis,

h1 � �0; ��; 0; ÿ��V;
h2 � ��2=2; ��=2; �ÿ2=2; ÿ�=2�V : �15�

So we obtain

A11 � ÿ�ÿ4; A12 � A21 � 0; A22 � �ÿ1: �16�

3.2. Direct space

The shear in direct space will be enacted by the matrix

Ajj � fA�jj� �ÿ1

�
1 0 ÿA11 ÿA21

0 1 ÿA12 ÿA22

0 0 1 0

0 0 0 1

��������
��������: �17�

This preserves the values of the Euclidean scalar products

between vectors of direct space and reciprocal space: if

qS � A�jjq and rS � Ajjr, then r � q � rS � qS. Therefore, the

Fourier transform connecting the two spaces will conserve its

2 By the principle of rational independence, see Appendix A.



form after shearing. We want now to determine the average

structure direct lattice

�av � fm�jjrS
1 � n�jjrS

2

��m; n 2 Zg; �18�
which is the reciprocal of ��av in Ejj. This means determining

the fundamental vectors3 �jjrS
1 , �jjrS

2 , by the conjugation

relations rS
i � hS

j � �ij. We obtain

�rS
i �1 � �ai1� � b i1�=D;

�rS
i �2 � ��ai2� � bi2�=D;

aij; b ij 2 Z 8 i; j � 1; 2;D 2 Z:
�19�

Explicit expressions are given in Appendix B. For the example

at the end of x3.1, we get

rS
1 � �ÿ�ÿ2; �3�=5�V;

rS
2 � �2�ÿ2; 0�V :

�20�

By transforming this primitive monoclinic lattice into a

centred orthorhombic lattice [de®ned by 2rS
1 � rS

2 �
�0; 2�3�=5�V and rS

2], we obtain the PAS of Cervellino et al.

(2002).

4. On the meaning of periodic average structure

We have now determined a periodic lattice �av � �QC

(��av � ��QC). What is the relation of the QC structure to this

lattice? Selecting from the QC diffraction pattern only the

re¯ections in ��av means taking an Ejj parallel section of

reciprocal space. In fact, we have shown in x3.2 that

��av � ��QC \ Ejj. By a known property of the Fourier trans-

form, in direct space this corresponds to a projection of the

structure onto Ejj (Steurer & Haibach, 1999b; Steurer, 2000).

Note that it is possible to bound the projection to the

E?-projected Voronoi cell V of �QC instead of the whole E?.

This inverts the cut-and-project scheme. The projection in

direct space is an integration (i.e. an averaging) on �?V, so

that the average structure probability density results as

Pav�rjj� � R
�?V

d2r? P̂S�rjj � r?�: �21�

It appears clear now that the PAS of a QC is a particular

average over all possible different QCs of the same LI class.

Owing to the shearing, the integrated origin shifts in E? are

linearly coupled with an Ejj shift (before shearing). This makes

the average structure meaningful (all the more so when ��av

contains a signi®cant fraction of the scattered intensity, as we

have in Steurer & Cervellino (2001) and Cervellino et al.

(2002). In fact, with a zero-coupled Ejj shift, the average

structure probability density results in a constant and its

Fourier spectrum contains only h � 0. This is what happens

when we perform the same average of (21) in the standard

embedding, without shear.

It is interesting to notice that the shear breaks the ®vefold

symmetry of the QC. Therefore, for every possible PAS, there

exists a set of ®ve equivalent PAS, related by a rotation of

2�=5. It is straightforward to see that the union of the basis

vectors of these ®ve PAS lattices spans the QC 4D lattice (or a

proper 4D sublattice of rank four). Otherwise, a complete 4D

basis set can be obtained by combining two different PASs, in

appropriate orientations.

5. Conclusions and discussion

We have presented a method for obtaining every possible PAS

of a d-QC and explained their meaning in terms of structural

average. The generalization to other QCs is surely possible; in

fact, the extension to icosahedral QCs is straightforward

(Steurer, 2000). Less simple ± if we want to consider all the

algebraic subtleties ± is the extension to octagonal and

dodecagonal QCs, but it is certainly possible. For other

possible (but never discovered in nature) classes ± e.g.

heptagonal ± there is a substantial difference, namely that

dim E?> dim Ejj (Niizeki, 1989). The consequences of this

fact have to be theoretically explored.

How do we understand the signi®cance of a PAS? First, we

can calculate the density Pav�rjj� and compare it with the

known structure of a periodic phase (based on whose

diffraction pattern the fundamental re¯ections h1, h2 have

been chosen). The recognition of a substantial similarity, apart

from some statistical broadening, is an excellent indication of

a strict phase relationship.

Any PAS, to be meaningful, needs to have an atomic like

scattering density, with consistently peaked maxima. A

necessary condition is that the lattice ��av contains some strong

re¯ections; so one does not need to consider in®nite PASs

because PASs with only a lot of weak re¯ections will have an

almost constant scattering density.

Another important reason to consider signi®cant PASs that

have atomic like scattering density is the possibility of using

them to understand in a new way the theory of electrons in

QCs. In fact, in certain cases (as we will publish elsewhere), it

appears that there are possible electron wavefunctions that

are substantially similar to Bloch waves of the PAS, allowing

for a weak perturbation.

We recall, ®nally, that the concept of PAS has been

thoroughly discussed in relation to the issue of the stability of

QCs (Duneau & Oguey, 1990; Steurer & Haibach, 1999b;

Steurer, 2000; Steurer & Cervellino, 2001; Cervellino et al.,

2002). The arguments presented, even if they need to be

deepened, are convincing. For comparison, the theory of the

stability of IMSs and CSs is well developed (see e.g. Janssen,

1986) and it is based on similar principles. It is very likely that,

mutatis mutandis, some concepts can also be applied to

QCs.

APPENDIX A
Number-theoretical tricks

We recall here some rules we use to simplify the passage

throughout the paper. Integer powers of the golden mean �
can be reduced as �n � Fn� � Fnÿ1, where Fn are the Fibonacci
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numbers, de®ned recursively 8n 2 Z as Fn�1 � Fn � Fnÿ1, with

seeds F0 � 0, F1 � 1. The number � is the smallest positive

root of the equation x4 ÿ 5x2 � 5 � 0. The latter's four roots

���, �� are the (doubled) imaginary parts of the roots

exp��2�i=5�, exp��4�i=5� of the cyclotomic polynomial

x4 � x3 � x2 � x� 1 � 0, which appears in the theory of

decagonal embedding (see Niizeki, 1989). As �2 � 3ÿ �, by

the aforesaid properties of �, it is possible to derive that

�2�n � Ln� � Lnÿ1. Ln are the Lucas numbers, de®ned 8n 2 Z
as Ln�1 � Ln � Lnÿ1, with seeds L0 � ÿ1, L1 � 2. For

completeness, we give the cross-relation Ln � Fn � Fnÿ2. Any

rational linear combination of powers of � and � can be

reduced by these rules to a rational linear combination of 1, �,

� and ��.

The principle of rational independence (i.e. ax� b � 0 iff

a � b � 0 when a; b 2 Q and x irrational) also allows one to

simplify quotients. For a; b; c; d 2 Q, we have

a� � b

c� � d
� �adÿ bc�� � cb� bdÿ ca

cdÿ c2 � d2
: �22�

APPENDIX B
Lengthy expressions

We give here explicitly the quantities in (19):

D � 5f�T2 ÿ U2 ÿ TU�M2 � �ÿR2 ÿ S2 � 3SR�Q2

� �ÿ3SR� S2 � R2�P2 � ��ÿ3T2 � 3U2 � 3TU�N
� �RU � 3ST ÿ 2RT ÿ 4SU�P
� �2RU ÿ 3SU � ST � RT�Q�M
� �T2 ÿ U2 ÿ TU�N2

� ��SU ÿ 2ST � 3RT � RU�P
� �ST � 2SU ÿ 4RT ÿ 3RU�Q�N
� �ÿR2 ÿ S2 � 3SR�QPg;

a11 � 10�ÿSPU � SPT � NTU ÿ NT2 � NU2 � RQT

ÿ U2M � T2M ÿ RPT � RQU ÿ SQU ÿ TUM�;
b11 � 10�2SPU � SQU ÿ SQT ÿ SPT ÿ NU2 � RQT

ÿ RPU ÿ NTU � NT2�;

a12 � 2�2S2Pÿ S2Qÿ 6RSP� 3RNT � RNU � 3RSQ

ÿ 2SNT � SNU � RUM ÿ 4USM � 3TSM ÿ 2RTM

� 2R2Pÿ R2Q�;
b12 � 2�ÿS2Pÿ 2S2Qÿ 2R2Q� 3RSPÿ 4RNT ÿ 3RNU

� 6RSQ� SNT � 2SNU � RTM � 2RUM ÿ 3USM

� TSM ÿ R2P�;

a21 � ÿ10�RQ2 � SP2 ÿ SQ2 � RPQÿ RP2 ÿ NPT

� NQT � NQU ÿMPU �MPT ÿMQU ÿ SPQ�;
b21 � ÿ10�ÿMPU �MQT ÿ SP2 � SQ2 � SPQ� NPU

� NPT ÿ 2NQT ÿ NQU�;

a22 � 2�ÿ2MRP�MRQ� 3MSPÿ 6MNT � 3MNU

�MSQ� 3RNPÿ 4RNQÿ 2NSP� 2N2T ÿ N2U

� NSQ� 2M2T ÿM2U�;
b22 � ÿ2�ÿMRPÿ 2MRQ� 4MSPÿ 3MNT ÿ 6MNU

� 3MSQÿ RNP� 3RNQÿ NSP� N2T � 2N2U

ÿ 2NSQ�M2T � 2M2U�:
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